检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Issa E. Issa Nadhir Al-Ansari Moayad Khaleel Sven Knutsson
机构地区:[1]Department of Civil, Environmental and Natural Resources Engineering, Lule~ University of Technology, Lulea 9718 7, Sweden [2]Department of Dams and Water Resources Engineering, University of Mosul, Mosul 41002, Iraq
出 处:《Journal of Civil Engineering and Architecture》2014年第9期1185-1193,共9页土木工程与建筑(英文版)
摘 要:The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.
关 键 词:AGGRADATION alluvial channel reservoir sedimentation sediment deposition.
分 类 号:TV697.25[水利工程—水利水电工程] TQ051.62[化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145