检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京化工大学信息科学与技术学院,北京100029
出 处:《计算机与应用化学》2014年第9期1127-1132,共6页Computers and Applied Chemistry
摘 要:流程雁阵(Process Goose Queue,PGQ)[1]为流程系统的分解协调优化提供了一个新的方法,然而,目前PGQ方法尚存在许多不足,如简单地将个体PGQ的状态跟踪处理为单目标优化问题,这与实际流程操作不符;而多级PGQ系统优化仍采用传统的数学规划方法,对模型要求苛刻且依赖于初值的选取。为此,论文提出了一个面向流程雁阵多目标跟踪的优化方法。首先对多级PGQ系统进行了结构优化,然后将NSGA-Ⅱ用于多级PGQ系统中个体PGQ的多目标优化求解,得到Pareto解集;在此基础上,将逼近理想解捧序法(TOPSIS)和扩展傅里叶幅值灵敏度分析法(EFAST)应用于个体PGQ的多目标决策,并从Pareto解集选取最优解在多级PGQ系统中逐级传递,实现流程系统的分解协调优化。仿真实例验证了方法的可行性和有效性。Process Goose Queue is a novel approach to the decomposition-coordination optimization of process systems. However, there are still several limitations in the previous PGQ method, such as considering individual PGQ's optimization as single-objective optimization, which is not consistent with practical process operations; and using traditional mathematical programming methods to deal with multi-level PQGs optimization problems, which demand accurate process models and depend on the selection of initial values. In response, a novel optimization method for multi-objective tracking of PGQs is proposed in this paper. Firstly, the multi-level PGQ's structure is facilitated. Secondly, NSGA-II methods are applied to solve the individual PGQ's optimization and Pareto set is obtained. On the basis, TOPSIS and EFAST methods are employed in the individual PGQ's multi-objective decision-making. And the optimal solution selected from the Pareto set is delivered to the next PGQ. A case study is carried out to demonstrate the feasibility and effectiveness of the proposed approaches.
分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15