检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋革联 余俊霖 刘飞[2] 何勇[2] 陈丹 莫旺成
机构地区:[1]浙江省公众信息产业有限公司,浙江杭州310006 [2]浙江大学生物系统工程与食品科学学院,浙江杭州310058 [3]慈溪市蔬菜开发有限公司,浙江慈溪315326
出 处:《光谱学与光谱分析》2014年第8期2225-2228,共4页Spectroscopy and Spectral Analysis
基 金:国家(863计划)项目(2013AA102405;2011AA100705);中央高校基本科研业务费专项资金项目(2014FZA6005);宁波市科技局重大项目(2011C11024)资助
摘 要:采用近红外高光谱成像技术对菜青虫的存活与死亡状态进行了研究,通过提取菜青虫不同状态的光谱信息,建立判别分析模型。以不同预处理方法对所提取的951.5~1649.2 nm光谱进行预处理,并建立偏最小二乘判别分析(partial least square-discriminant analysis,PLS-DA)模型对菜青虫的生死状态进行判别分析,判别正确率接近或达到100%。用移动平均(moving average,MA)5点平滑光谱分别采用连续投影算法(successive projections algorithm,SPA)以及加权回归系数(weighted regression coefficient,Bw )分别选取了17和20个特征波长进行生与死状态的判别。基于特征波长建立了 PLS-DA,K 最邻近节点算法(K-nea-rest neighbor,KNN),BP神经网络(back propagation neural network,BPNN)以及支持向量机(support vec-tor machine,SVM)模型,判别正确率接近100%。结果表明采用近红外高光谱成像技术对菜青虫生命状态的研究是可行的,为作物虫害的快速诊断提供了新方法。Near-infrared hypserspectral imaging technology was applied for the discrimination of a variety of life states,the judg-ment of being alive or death.Discrimination models were built based on spectral data of pieris rapaes acquired during different life states.The wavelengths from 951. 5 to 1 649. 2 nm were used for analysis after the removal of spectral region with obvious noi-ses at the beginning and the end.And the spectra data of 951. 5~1 649. 2 nm were preprocessed by different pretreatment meth-ods.To discriminate the state of being alive or death of pieris rapaes,discrimination models were built based on the spectral data processed by different pretreatment methods.Results showed that the discriminant accuracy can approach or attain 100%.Thus the method was proved to be useful for the discrimination of the state of being alive or death of pieris rapaes.After the spectral data were preprocessed by moving average (MA)algorithm,17 characteristic wavelengths were extracted based on weighted re-gression coefficient (Bw)and 20 were extracted based on successive projections algorithm (SPA)to identify the state of being a-live or death of pieris rapaes.Four classification methods based on characteristic wavelengths,including partial least squares-dis-criminant analysis (PLS-DA),K-nearest neighbor algorithm (KNN),back propagation neural network (BPNN)and support vector machine (SVM)were used to build discriminant models for identifying the state of being alive or death of pieris rapaes. The discriminant accuracy all can approach or attain 100%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171