基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型  

Use of velocity source immersed boundary-lattice Boltzmann method to study bionic micro-fluidic driving model

在线阅读下载全文

作  者:刘飞飞[1] 魏守水[1] 魏长智[1,2] 任晓飞[1] 

机构地区:[1]山东大学,控制科学与工程学院,济南250061 [2]济南大学,信息科学与工程学院,济南250002

出  处:《物理学报》2014年第19期241-247,共7页Acta Physica Sinica

基  金:国家自然科学基金(批准号:51075243;11002083)资助的课题~~

摘  要:浸入边界—晶格波尔兹曼法在流固耦合等复杂的流体系统中得到广泛的应用.本文采用基于速度源修正的浸入边界—晶格玻尔兹曼法,建立了仿生微流体驱动模型,创新性地将波动弹性体的速度引入晶格玻尔兹曼方程,避免了传统浸入边界—晶格玻尔兹曼法中浸入边界速度-结构变形-力之间的转换,提高了计算效率和准确率.研究了行波波动细丝对流场内流动速度和压力的影响,重点分析了驱动模型各项参数对微流体的驱动效果.研究结果表明:细丝长度、频率、振幅的增加引起出口处流量的增加;波长、流体粘滞系数以及细丝位置与出口处流量呈复杂的非线性关系.Bionic micro-fluidic driving model is built in this paper based on the velocity source immersed boundary-lattice Boltzmann method. In order to avoid the transformation between the velocity and the force, this method introduces an immersed boundary into the lattice Boltzmann equation as the velocity source, which can reduce the computational expense. Firstly, the effects of the traveling waves produced by the elastic filament on the velocity and pressure of the flow field are studied. Secondly, the paper focuses on the influences of parameters on the flow rate. Results show that the flow rate increases with increasing frequency, wave amplitude, and filament length. Relationships between the flow rate and the other parameters of the model, such as the position of filament, wavelength, and kinematic viscosity of the fluid, are shown to be nonlinear and complicated.

关 键 词:晶格波尔兹曼法 浸入边界法 微流体驱动 

分 类 号:O353.4[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象