检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079
出 处:《武汉大学学报(信息科学版)》2014年第8期891-896,共6页Geomatics and Information Science of Wuhan University
基 金:国家973计划资助项目(2012CB719904)~~
摘 要:提出了一种利用多种极化特征并结合分水岭算法与决策树C5.0分类器的极化SAR数据分类方法。首先对极化SAR数据进行极化精致Lee滤波,接着对其进行极化分解得到多个极化通道与Pauli RGB图像,改进梯度图生成法并进行形态学分水岭分割与区域合并,最后选择样本构建决策树C5.0分类器并进行分类。实验结果表明,该方法与传统基于像素的分类方法相比精度有显著提高,同时由于使用了较多的极化特征,也使分类精度在一定程度上得到了提高。A supervised classification method of polarimetric sythetic aperture radar (PoSAR) data using watershed segmentation and Decision Tree C5.0 with many polarimetric channels is proposed. First, the PolSAR data was filtered using the 5 × 5 refined Lee PolSAR speckle filter, and then a Pauli RGB color image and many polarimetric channels were obtained using various algorithms. Then, watershed segmentation on gradient map was made for a homogeneous area and the features of every area were worked out. At last, Decision tree C5.0 was used to deal with the data. The result shows that this method performs better than methods based on pixels, and the classification accuracy is improved with the quantity of polarimetrie characteristic increase.
关 键 词:极化精致Lee滤波 Pauli分解 极化分解 分水岭分割 决策树C5.0
分 类 号:P237.3[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31