检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学机械工程学院,天津300072 [2]天津大学机构理论与装备设计教育部重点实验室,天津300072
出 处:《振动与冲击》2014年第17期1-5,共5页Journal of Vibration and Shock
基 金:国家自然科学基金(51275336);高等学校博士学科点专项科研基金(20120032110001)
摘 要:针对机械系统早期微弱故障信号难识别诊断问题,提出一阶线性系统调参广义随机共振的特征提取方法,该方法基于调节一阶线性系统参数,可以得到信噪比取极大值的广义随机共振现象。为得到清晰的特征信号,以可辨识性为优化目标,给出了系统参数、信号频率、采样频率等参数之间的选择关系。滑动轴承试验台上转子轴的早期微弱故障模拟实验,验证了此方法的有效性。Aiming at recognizing a weak fault signal in its early stage, a feature extraction method of a signal based on the parameter-adjusted stochastic resonance (SR) of a first-order linear system in a broad sense was presented here. This method was based on a generalized stochastic resonance phenomenon that the output signal-to-noise ratio (SNR) reaches a maximum by tuning parameters of a first-order linear system. To acquire a more distinct characteristic signal, the selecting relations among system parameters, signal frequencies and sampling rates were explained taking the best signal reognition as an optimization objective. Finally, the analog test rotor shaft's early weak fault obtained on a test-bed of sliding bearings verified the effectiveness of this method.
关 键 词:一阶线性系统 调参广义随机共振 微弱信号 故障诊断
分 类 号:TN911.4[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112