基于克隆选择和粒子群混合算法的导墙结构损伤识别  被引量:2

Damage identification method for guide wall structures based on a hybrid algorithm of clonal selection and particle swarm optimization

在线阅读下载全文

作  者:欧阳秋平 何龙军[1,2] 练继建[1] 陈媛媛[3] 马斌[1] 

机构地区:[1]天津大学水利工程仿真与安全国家重点实验室,天津300072 [2]交通运输部水运科学研究院,北京100088 [3]中水北方勘测设计研究有限责任公司,天津300222

出  处:《振动与冲击》2014年第17期120-126,共7页Journal of Vibration and Shock

基  金:国家自然科学基金创新研究群体科学基金(51021004);国家自然科学基金青年科学基金项目(51209158);高碾压混凝土坝工作性态识别及操作诊断技术研究(2013CB035905-1);天津市应用基础及前沿技术研究计划(12JCQNJC04600);国家基金青年基金项目(50909072)

摘  要:导墙结构长期受到水流和风等交变荷载作用,容易产生结构损伤。由于环境激励输入的未知性以及测试条件和精度的限制,使得环境激励下大型水工结构的损伤诊断遇到了很大困难。基于此,提出一种利用实数编码克隆选择和粒子群混合算法优化模态频率指标的导墙结构损伤诊断方法。该方法仅需可测性强的低阶模态频率,非常适合于环境激励条件下的大型水工结构的无损动态损伤检测。将该诊断方法应用于某导墙的损伤识别中,证明该方法在算法全局寻优性能和识别准确性上均有较大优势,可尝试在各类水工结构的损伤诊断中推广应用。The guide wall structure in hydraulic engineering is subjected to long-term complicated loads, such as, alternative water pressure and wind pressure, they may lead to the damage of structures. However, damage detection is difficult to implement in large hydraulic structures under ambient excitation because of the uncertainty of ambient excitation and the limitation of the test condition and precision. Here, a new damage detection method using a real encoding hybrid algorithm of clonal selection and particle swarm optimization to optimize the modal frequency index was proposed for guide wall structures. The proposed method only needed lower modal frequencies, thus it was suitable for nondestructive dynamic damage detection of large hydraulic structures under ambient excitation. Taking a certain guide wall structure as an example, the results showed that this method has advantages in the global searching performance and identification accuracy; the proposed method is effective and can be applied in many types of large hydraulic structures.

关 键 词:导墙结构 损伤识别 克隆选择算法 粒子群算法 模态频率 

分 类 号:TV312[水利工程—水工结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象