检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学矿业学院,辽宁阜新123000 [2]中南大学资源与安全工程学院,湖南长沙410083
出 处:《中国安全科学学报》2014年第8期31-36,共6页China Safety Science Journal
基 金:国家自然科学基金资助(51304110);辽宁省高等学校优秀人才支持计划资助(LJQ2013039)
摘 要:为准确、快速地预测采场顶板稳定性(SRS),建立基于支持向量机(SVM)理论的SRS评价法。考虑煤-岩石介质与环境条件和工程因素,研究岩石单轴抗压强度、岩石质量指标(RQD)、煤体抗压强度、顶板水文状况和工作面月推进速度对SRS的影响。建立SRS识别的SVM模型。为提高预测模型的泛化能力和预测精度,利用网格搜索法(GSM)及10折交叉确认寻优方法对SVM模型的参数进行优化。用该模型对5组待判工程实例进行判别。研究结果表明,模型训练样本10折交叉确认准确率达91.3%,对测试样本识别正确率为80%,识别结果与实际较吻合。In order to predict SRS accurately and rapidly, a new method based on SVM was worked out for evaluating the SRS. Coal-rock medium properties, environmental and engineering conditions were considered. Effects of five factors on SRS were studied. The factors are the uniaxial compressive strength of rock, rock-quality designation (RQD), compressive strength of coal mass, hydrological condition of roof and advancing speed of working face. A SVM analysis model was built to predict the dynamic engineering classification of SRS. To enhance the generalization performance and prediction accuracy of the model, GSM and 10-fold cross validation optimization method were applied to optimize the parameters of it. The model was applied to 5 groups of engineering example. The results show that 10-fold cross-validation can achieve accuracy of as high as 91.3% for training samples, and 80% for testing samples, and that SVM classification model prediction of SFI.q ,-,~,,~,, ;~l, ___v~_
关 键 词:采场顶板稳定性(SRS) 支持向量机(SVM) 网格搜索法(GSM) 10折交叉确认 预测
分 类 号:X936[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3