检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学交通运输学院,甘肃兰州730070
出 处:《电子科技》2014年第10期71-75,共5页Electronic Science and Technology
摘 要:针对遗传算法(GA)易陷入局部最优解、搜索精度低等缺点,提出了网络启发式策略的遗传算法(NSHGA),并将其成功地应用于0-1背包问题的求解。该算法采用网络节点关联策略,使算法具有良好的全局寻优能力。同时引入网络节点矩阵优化,利用其精细的局部遍历搜索性能,使算法具有较高地搜索精度。实例仿真结果表明,NSHGA算法可有效避免基本GA算法的早熟收敛,且具有寻优能力强、搜索精度高等特点。此外,与基本遗传算法仿真相比,可明显提高0-1背包问题求解的精度。In order to overcome GA’s disadvantages that it can be easily trapped into local optimization and has low accuracy of search,a network strategy heuristic genetic optimization algorithm has been proposed,and the algorithm has been successfully applied to solving the 0-1 knapsack problem. In this algorithm,the strategy of network node correlation is introduced to improve the global optimizing capability. This paper also introduces network node matrix optimization and uses its thorough local traversal search to improve the solution accuracy. The simulation results show that NSHGA can not only avoid premature effectively,but also has powerful optimizing ability and high optimizing precision. Compared with basic genetic algorithm simulation,NSHGA can obviously improve the accuracy of the solution to the 0-1 knapsack problem.
关 键 词:遗传算法 启发式网络策略 0-1背包问题 节点矩阵
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186