检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105
出 处:《传感技术学报》2014年第10期1431-1436,共6页Chinese Journal of Sensors and Actuators
基 金:辽宁省创新团队项目(LT2010047)
摘 要:煤矿井下输电线路的实时监测中,漏电故障定位是供电系统保护的重要研究课题。针对井下无线传感器网络定位算法存在不准确的问题,提出了一种改进DV-Hop节点定位算法。首先通过计算锚节点组成的三角形面积,排除面积极小的锚节点组,避免锚节点近似共线的情况,完成了锚节点的优选方案;此外在粒子群算法的基础上结合遗传算法和混沌理论,提出了一种遗传混沌粒子群优化算法;最后利用改进的粒子群算法对DV-Hop算法定位得到的节点位置进行校正。经过仿真实验表明在相同的网络环境下,与传统DV-Hop算法相比,改进算法能够更有效地提高定位精度,从而更加准确地监测到煤矿井下漏电事故位置。The location of leakage fault is an important topic of power system protection in the real ̄time monitoring of transmission lines of coal mine. An improved DV ̄Hop localization algorithm is proposed in order to solve the problem of inaccurate localization for wireless sensor networks in the underground coal mine. Firstly,by calculating the triangle area of anchor nodes to eliminate the anchor node group of which the area is tiny. Then,a beacon node optimization is followed to eliminate the beacon nodes which are approximately in a line. Besides,the Genetic Chaos Particle Swarm Optimization algorithm was proposed based on the particle swarm optimization algorithm which com ̄bine with genetic algorithms and chaos. Finally,the improved particle swarm optimization was used to correct the lo ̄cation of DV ̄Hop algorithm. The results from simulation show that the proposed improved algorithm has better loca ̄ting performance in positioning accuracy than the traditional DV ̄Hop algorithm in the same network environment. Therefore,the location of leakage can be monitored more accurately in the coal mine.
关 键 词:无线传感器网络 故障定位 DV-HOP算法 混沌 遗传算法 粒子群优化算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43