检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:HU Jiang BAI ZhiDong
出 处:《Science China Mathematics》2014年第11期2399-2406,共8页中国科学:数学(英文版)
基 金:supported by the Fundamental Research Funds for the Central Universities;Program for Changjiang Scholars and Innovative Research Team in University;National Natural Science Foundation of China(Grant Nos.11301063 and 11171057)
摘 要:Skorokhod's representation theorem states that if on a Polish space,there is a weakly convergent sequence of probability measures μnw→μ0,as n →∞,then there exist a probability space(Ω,F,P) and a sequence of random elements Xnsuch that Xn→ X almost surely and Xnhas the distribution function μn,n = 0,1,2,... We shall extend the Skorokhod representation theorem to the case where if there are a sequence of separable metric spaces Sn,a sequence of probability measures μnand a sequence of measurable mappings n such that μnn-1w→μ0,then there exist a probability space(Ω,F,P) and Sn-valued random elements Xndefined on Ω,with distribution μnand such that n(Xn) → X0 almost surely. In addition,we present several applications of our result including some results in random matrix theory,while the original Skorokhod representation theorem is not applicable.Skorokhod's representation theorem states that if on a Polish space,there is a weakly convergent sequence of probability measures μnw→ μ0,as n → ∞,then there exist a probability space(Ω,F,P) and a sequence of random elements Xnsuch that Xn→ X almost surely and Xnhas the distribution function μn,n = 0,1,2,... We shall extend the Skorokhod representation theorem to the case where if there are a sequence of separable metric spaces Sn,a sequence of probability measures μnand a sequence of measurable mappings n such that μnn-1w→ μ0,then there exist a probability space(Ω,F,P) and Sn-valued random elements Xndefined on Ω,with distribution μnand such that n(Xn) → X0 almost surely. In addition,we present several applications of our result including some results in random matrix theory,while the original Skorokhod representation theorem is not applicable.
关 键 词:Skorohod's representation theorem strong representation of weak convergence random matrices
分 类 号:O211.4[理学—概率论与数理统计] O189.11[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.79.15