检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Electronic Engineering, Xi’an University of Technology [2]School of Science, Xi’an Polytechnic University
出 处:《Chinese Physics B》2014年第10期417-423,共7页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.61076011 and 51177134)
摘 要:6H-SiC (1010) surface and Si (220)/6H-SIC (1010) interface with different stacking sites are investigated using first-principles calculations. Surface energies of 6H-SiC (1010) (case I, case II, and case III) are firstly studied and the surface calculation results show that case II and case III are more stable than case I. Then, the adhesion energies, fracture toughness values, interfacial energies, densities of states, and electronic structures of Si (220)/6H-SIC (1010) interfaces for three stacking models (AM, BM, and CM) are calculated. The CM model has the highest adhesion energy and the lowest interracial energy, suggesting that the CM is stronger and more thermodynamically stable than AM and BM. Densities of states and the total charge densities give evidence that interfacial bonding is formed at the interface and that Si-Si and Si-C are induced due to the hybridization of C-2p and Si-3p. Moreover, the Si-C is much stronger than Si-Si at the interface, implying that the contribution of the interfacial bonding mainly comes from Si-C rather than Si-Si.6H-SiC (1010) surface and Si (220)/6H-SIC (1010) interface with different stacking sites are investigated using first-principles calculations. Surface energies of 6H-SiC (1010) (case I, case II, and case III) are firstly studied and the surface calculation results show that case II and case III are more stable than case I. Then, the adhesion energies, fracture toughness values, interfacial energies, densities of states, and electronic structures of Si (220)/6H-SIC (1010) interfaces for three stacking models (AM, BM, and CM) are calculated. The CM model has the highest adhesion energy and the lowest interracial energy, suggesting that the CM is stronger and more thermodynamically stable than AM and BM. Densities of states and the total charge densities give evidence that interfacial bonding is formed at the interface and that Si-Si and Si-C are induced due to the hybridization of C-2p and Si-3p. Moreover, the Si-C is much stronger than Si-Si at the interface, implying that the contribution of the interfacial bonding mainly comes from Si-C rather than Si-Si.
关 键 词:first-principles calculations surface interface adhesion energy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222