稳健的条件概率约束匹配场处理  被引量:1

Robust Conditional Probability Constraint Matched Field Processing

在线阅读下载全文

作  者:王奇[1] 王英民[1] 苟艳妮[1] 

机构地区:[1]西北工业大学航海学院,西安710072

出  处:《电子与信息学报》2014年第10期2425-2430,共6页Journal of Electronics & Information Technology

基  金:国家自然科学基金(51209173)资助课题

摘  要:为了提高自适应匹配场处理(AMFP)的稳健性,该文提出一种条件概率约束的自适应匹配场处理算法(MFP-CPC)。该算法利用贝叶斯准则推导出了位置参数的后验概率密度估计,以此作为权系数给自适应匹配场处理器(AMFP)提供主瓣保护和旁瓣压缩性能,使得算法具有 AMFP 高分辨特点的同时稳健性也得到改善。为了验证算法的性能,使用NRL的典型测试数据进行了仿真分析。结果表明:MFP-CPC具有优于Bartlett和最小方差无失真响应(MVDR)的定位性能,其稳健性和Bartlett类似,主瓣宽度和MVDR相同且旁瓣比MVDR低约6~8 dB。In order to improve the robustness of Adaptive Matched Field Processing (AMFP), a Conditional Probability Constraint Matched Field Processing (MFP-CPC) is proposed. The algorithm derives the posterior probability density of the source locations from Bayesian Criterion, then the main lobe of AMFP is protected and the side lobe is restricted by the posterior probability density, so MFP-CPC not only has the merit of high resolution as AMFP, but also improves the robustness. To evaluate the proposed algorithm, the canonical test case of the Naval Research Laboratory (NRL) is used. The results show that MFP-CPC is better than Bartlett and Minimum Variance Distoritionless Response (MVDR). Its robustness is like Bartlett, and its main lobe is the same as that of MVDR, meanwhile its side lobe is lower about 6 to 8 dB than the latter.

关 键 词:水声信号处理 自适应匹配场处理 后验概率密度 稳健性 

分 类 号:TB566[交通运输工程—水声工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象