检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫光辉[1] 关志伟[1] 杜峰[1] 王少华[1]
机构地区:[1]天津职业技术师范大学汽车与交通学院,天津300222
出 处:《机械强度》2014年第5期682-686,共5页Journal of Mechanical Strength
基 金:天津市自然科学基金重点项目(12JCZDJC34500)资助~~
摘 要:在建立含时滞的车辆1/4主动悬架动力学微分方程模型的基础上,通过PID控制策略及含时滞的线性常微分方程理论推导出了模型的稳定条件,采用了Routh-Hurwitz稳定判据的方法分析了模型的稳定性条件,计算出了系统的临界失稳时滞时间。通过Matlab/Simulink实例仿真,结果表明当取临界时滞时间0.153 s时,与无时滞PID控制相比,簧载质量垂向加速度幅值范围及均方根值增加了1.2倍左右,系统处于临界稳定。当时滞时间τ=0.18 s时,簧载质量垂向加速度幅值范围及均方根值急剧增加了2.5倍左右,系统出现不稳定的混乱振动状态。计算分析与仿真结果证明了Routh-Hurwitz稳定判据能为主动悬架设计及时滞失稳机理奠定理论基础。With the building of the dynamics differential equation model of 1/4 vehicle active suspension with time-delay, The stability conditions of the model were deduced by the PID control strategy and the theory of linear ordinary differential equation with time-delay, the stability of model was analyzed by the Routh-Hurwitz stability criterion and the critical instability lag-time was discussed and calculated. By the example simulation in Matlab/Simulink, the results show that when the critical lag- time is 0. 153 s, comparing with PID control method of without time-delay the amplitude range and its root mean square value of spring load quality vertical acceleration were increased 1.2 times or so and the system was being on the critical stability. When the critical lag-time is 0. 18 s, the amplitude range and its root mean square value of spring load quality vertical acceleration were increased 2. 5 times rapidly comparing with PID control method of without time-delay and the system was being on the instability and chaos vibration station. The calculation and simulation results proved that the theory of Routh-Hurwitz stability criterion lay a foundation for the design and instability mechanism of active suspension.
关 键 词:主动悬架 时滞 Routh-Hurwitz稳定判据 稳定性分析 仿真
分 类 号:U463.335.1[机械工程—车辆工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.253.148