梨枣糖度无损检测建模分析——基于高光谱成像技术  被引量:2

Nondestructive Testing Modeling Analysis of Sugar Content in Pear Jujube——Based on Hyperspectral Imaging Technique

在线阅读下载全文

作  者:王斌[1] 尹丽华[1] 张淑娟[1] 

机构地区:[1]山西农业大学工学院,山西太谷030801

出  处:《农机化研究》2014年第10期50-53,57,共5页Journal of Agricultural Mechanization Research

基  金:国家自然科学基金项目(31271973);山西省自然科学基金项目(2012011030-3)

摘  要:以梨枣为对象,利用去噪和去基后的全光谱数据及提取的42个近似系数,分别建立相应的PLS和PCR模型。结果分析表明:用近似系数所建的PLS模型校正集决定系数Rc(0.931)和PCR模型Rc(0.882)分别比用全光谱所建的PLS模型Rc(0.875)和PCR模型Rc(0.858)要高;PLS模型校正集方差RMSEC(0.986)、预测集方差RMSEP(1.159)和PCR模型校正集方差RMSEC(1.048)、预测集方差RMSEP(1.322)分别要比全光谱PLS模型校正集方差RMSEC(0.731)、预测集方差RMSEP(1.270)和PCR模型校正集方差RMSEC(0.958)、预测集方差RMSEP(1.361)的差值更为接近。这说明,应用近似系数所建模型较稳定。In Huping jujube for the study. Using the denoising and to base after full spectrum data and extract the 42 approximate coefficient model corresponding PLS and PCR respectively. Results show that:PLS model is built by using approximate coefficient correction set decision coefficient of Rc (0. 931 ) and PCR models Rc (O. 882 ), respectively, than with a full spectrum PLS model is built by Rc (0. 875 ) and PCR models Rc (0. 858 ) ; PLS model calibration set variance RMSEC (O. 986) ,prediction set variance RMSEP ( 1. 159 ) and PCR model calibration set variance RM- SEC (1. 048 ) ,prediction set variance RMSEP (1. 322)compared with the full spectrum PLS model calibration set vafiance RMSEC (O. 731 ) , prediction set variance RMSEP ( 1. 270 ) and PCR model calibration set variance RMSEC (0. 958 ) ,prediction set variance RMSEP ( 1. 361 ) difference value more close to. Explain application of approximate coefficient of the model is stable.

关 键 词:梨枣 糖度质量分数 高光谱 近似系数 

分 类 号:S123[农业科学—农业基础科学] S665.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象