复合材料厚梁精化锯齿理论及有限元分析  

REFINED ZIG-ZAG THEORY FOR THICK COMPOSITE BEAMS AND FINITE ELEMENT ANALYSIS

在线阅读下载全文

作  者:任晓辉[1] 陈万吉[1] 吴振[1] 

机构地区:[1]沈阳航空航天大学,辽宁省飞行器复合材料结构分析与仿真重点实验室,沈阳110136

出  处:《固体力学学报》2014年第4期384-390,共7页Chinese Journal of Solid Mechanics

基  金:国家自然科学基金(11272217);辽宁高校优秀人才支持项目(LR201033)资助

摘  要:由于具有预先满足层间应力连续的优点,锯齿理论被广泛研究和应用.然而,至今锯齿理论仍然存在如下难题:基于锯齿理论构造单元时,需使用满足单元间C1连续的插值函数,难于构造多节点高阶单元,而且精度较低.如果这些问题不被重视和解决,应用此类理论分析复合材料力学问题可能得出不恰当的结论.通过发展高精度的考虑横法向应变的C0型锯齿理论,论文将克服已有锯齿理论遇到的上述难题.基于发展的锯齿理论,构造三节点梁单元验证发展理论模型的性能.Zig-zag theory has a merit of continuity conditions of transverse shear stresses being a priori satisfied,so it is widely studied and used. However, in the zig-zag theory, some problems have not yet solved. The C1 shape functions have to be required during its finite element implementation, so that it is dif- ficult to construct higher-order element based on the zig-zag theory. Moreover,previous zig-zag theories are less accurate in comparison with three-dimensional elasticity solutions. If these problems are neglected, some improper conclusions might be drawn when these zig-zag theories are used to analyze the mechanical problems of laminated composites. By proposing an accurate C^-type zig-zag theory considering transverse normal strain,difficulties encountered by previous zig-zag theories are overcome in this paper. Based on the proposed zig-zag theory, a three-node beam element is constructed to verify the performance of the pro- posed model.

关 键 词:C0型锯齿理论 三节点梁单元 横法向应变 层合梁 横向位移导数 

分 类 号:O341[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象