检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳航空航天大学,辽宁省飞行器复合材料结构分析与仿真重点实验室,沈阳110136
出 处:《固体力学学报》2014年第4期384-390,共7页Chinese Journal of Solid Mechanics
基 金:国家自然科学基金(11272217);辽宁高校优秀人才支持项目(LR201033)资助
摘 要:由于具有预先满足层间应力连续的优点,锯齿理论被广泛研究和应用.然而,至今锯齿理论仍然存在如下难题:基于锯齿理论构造单元时,需使用满足单元间C1连续的插值函数,难于构造多节点高阶单元,而且精度较低.如果这些问题不被重视和解决,应用此类理论分析复合材料力学问题可能得出不恰当的结论.通过发展高精度的考虑横法向应变的C0型锯齿理论,论文将克服已有锯齿理论遇到的上述难题.基于发展的锯齿理论,构造三节点梁单元验证发展理论模型的性能.Zig-zag theory has a merit of continuity conditions of transverse shear stresses being a priori satisfied,so it is widely studied and used. However, in the zig-zag theory, some problems have not yet solved. The C1 shape functions have to be required during its finite element implementation, so that it is dif- ficult to construct higher-order element based on the zig-zag theory. Moreover,previous zig-zag theories are less accurate in comparison with three-dimensional elasticity solutions. If these problems are neglected, some improper conclusions might be drawn when these zig-zag theories are used to analyze the mechanical problems of laminated composites. By proposing an accurate C^-type zig-zag theory considering transverse normal strain,difficulties encountered by previous zig-zag theories are overcome in this paper. Based on the proposed zig-zag theory, a three-node beam element is constructed to verify the performance of the pro- posed model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15