INFINITELY MANY SOLUTIONS TO p(x)-BIHARMONIC PROBLEM WITH NAVIER BOUNDARY CONDITIONS  

INFINITELY MANY SOLUTIONS TO p(x)-BIHARMONIC PROBLEM WITH NAVIER BOUNDARY CONDITIONS

在线阅读下载全文

作  者:Zigao Chen 

机构地区:[1]Dept. of Math. and Information Science, North China University of Water Resources and Electric Power

出  处:《Annals of Differential Equations》2014年第3期272-281,共10页微分方程年刊(英文版)

基  金:supported in part by the NNSF of China(Grant No.11101145);Research Initiation Project for Highlevel Talents(201031)of North China University of Water Resources and Electric Power

摘  要:In this paper, we consider a p(x)-biharmonic problem with Navier boundary conditions. The existence of infinitely many solutions which tend to zero is investigated based on the symmetric Mountain Pass lemma. Our approach relies on the theory of variable exponent Sobolev space.In this paper, we consider a p(x)-biharmonic problem with Navier boundary conditions. The existence of infinitely many solutions which tend to zero is investigated based on the symmetric Mountain Pass lemma. Our approach relies on the theory of variable exponent Sobolev space.

关 键 词:fourth order elliptic equation Navier condition variable exponent Palais-Smale condition symmetric Mountain Pass lemma 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象