Improved metrics for evaluating fault detection efficiency of test suite  

改进的测试用例错误检测效率度量方法(英文)

在线阅读下载全文

作  者:王子元[1,2] 陈林[2] 汪鹏[3] 仉雪玲 

机构地区:[1]南京邮电大学计算机学院,南京210006 [2]南京大学软件新技术国家重点实验室,南京210093 [3]东南大学计算机科学与工程学院,南京210096

出  处:《Journal of Southeast University(English Edition)》2014年第3期285-288,共4页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.61300054);the Natural Science Foundation of Jiangsu Province(No.BK2011190,BK20130879);the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.13KJB520018);the Science Foundation of Nanjing University of Posts&Telecommunications(No.NY212023)

摘  要:By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out some limitations of the APFD series metrics. These limitations include APFD series metrics having inaccurate physical explanations and being unable to precisely describe the process of fault detection. To avoid the limitations of existing metrics, this paper proposes two improved metrics for evaluating fault detection efficiency of a test suite, including relative-APFD and relative-APFDc. The proposed metrics refer to both the speed of fault detection and the constraint of the testing source. The case study shows that the two proposed metrics can provide much more precise descriptions of the fault detection process and the fault detection efficiency of the test suite.分析了在测试用例优先级问题中被广泛用于度量测试用例集错误检测效率的APFD度量标准及其变种,指出APFD系列度量标准存在物理意义模糊、对错误检测过程描述不清晰等缺陷.针对这些缺陷对已有度量标准进行改进,提出2种新的测试用例集错误检测效率度量方法 relative-APFD和relative-APFDC.新的度量方法在评价测试用例集效率时,综合考虑了错误检测速度和测试资源约束问题.实例分析表明,新方法可以更为清晰地描述测试用例集错误检测过程,并更为准确地反映不同测试用例集的错误检测效率.

关 键 词:software testing test case prioritization fault detection efficiency METRIC 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象