检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Xiao-tong TIAN Xiao-hong XU Rui
机构地区:[1]College of Science, China University of Petroleum, Beijing 102249, China [2]Institute of AppliedMathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China
出 处:《Chinese Quarterly Journal of Mathematics》2014年第3期426-437,共12页数学季刊(英文版)
基 金:Supported by the NNSF of China(11371368,11071254);Supported by the NSF of Hebei Province(A2014506015);Supported by the NSF for Young Scientists of Hebei Province(A2013506012)
摘 要:In this paper, a virus infection model with standard incidence rate and delayed CTL immune response is investigated. By analyzing corresponding characteristic equations,the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the CTL-activated infection equilibrium are established, respectively. By means of comparison arguments, it is verified that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio is less than unity. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the CTL-inactivated infection equilibrium of the system is globally asymptotically stable if the immune response reproduction ratio is less than unity and the basic reproduction ratio is greater than unity. Numerical simulations are carried out to illustrate the theoretical result.In this paper, a virus infection model with standard incidence rate and delayed CTL immune response is investigated. By analyzing corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the CTL-activated infection equilibrium are established, respectively. By means of comparison arguments, it is verified that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio is less than unity. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the CTL-inactivated infection equilibrium of the system is globally asymptotically stable if tile immune response reproduction ratio is less than unity and the basic reproduction ratio is greater than unity. Numerical simulations are carried out to illustrate the theoretical result.
关 键 词:virus infection CTL immune response time delay Hopf bifurcation LaSalle’s invariance principle global stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151