机构地区:[1]Laboratory of Marine Ecosystem and Biogeochemistry,Second Institute of Oceanography, State Oceanic Administration [2]State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences [3]College of Life Sciences, Zhejiang University [4]Department of Plant and Environmental Sciences, the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,Jerusalem 91904, Israel [5]The Hebrew University of Jerusalem, The Edmond J. Safra Campus,Givat Ram, Jerusalem 91904, Israel
出 处:《Acta Oceanologica Sinica》2014年第10期94-104,共11页海洋学报(英文版)
基 金:The China Ocean Mineral Resources R&D Association(COMRA)Special Foundation under contract No.DY125-15-R-03;the National Natural Science Foundation of China under contract Nos 41276173 and 41206104;the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration under contract No.JT1011
摘 要:A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase chain reaction(PCR) amplification of the 16 S rRNA and nifH genes. Within the Archaea, the dominant clones were from marine benthic group E(MBGE) and marine group I(MGI) belonging to the phyla Euryarchaeota and Thaumarchaeota, respectively. More than half of the bacterial clones belonged to the Proteobacteria, and most fell within the Gammaproteobacteria. No epsilonproteobacterial sequence was observed. Additional phyla were detected including the Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Nitrospirae, Chloroflexi, Chlorobi, Chlamydiae, Verrucomicrobia, and candidate divisions OD1, OP11, WS3 and TM6, confirming their existence in hydrothermal vent environments. The detection of nifH gene suggests that biological nitrogen fixation may occur in the hydrothermal vent field of the Southwest Indian Ridge. Phylogenetic analysis indicated that only Clusters I and III NifH were present. This is consistent with the phylogenetic analysis of the microbial 16 S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase chain reaction(PCR) amplification of the 16 S rRNA and nifH genes. Within the Archaea, the dominant clones were from marine benthic group E(MBGE) and marine group I(MGI) belonging to the phyla Euryarchaeota and Thaumarchaeota, respectively. More than half of the bacterial clones belonged to the Proteobacteria, and most fell within the Gammaproteobacteria. No epsilonproteobacterial sequence was observed. Additional phyla were detected including the Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Nitrospirae, Chloroflexi, Chlorobi, Chlamydiae, Verrucomicrobia, and candidate divisions OD1, OP11, WS3 and TM6, confirming their existence in hydrothermal vent environments. The detection of nifH gene suggests that biological nitrogen fixation may occur in the hydrothermal vent field of the Southwest Indian Ridge. Phylogenetic analysis indicated that only Clusters I and III NifH were present. This is consistent with the phylogenetic analysis of the microbial 16 S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.
关 键 词:DEEP-SEA hydrothermal vent microbial diversity 16S rRNA gene nifH gene
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...