检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shao Xiong HOU Da Chun YANG Si Bei YANG
机构地区:[1]School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education [2]School of Mathematics and Statistics,Lanzhou University
出 处:《Acta Mathematica Sinica,English Series》2014年第11期1917-1962,共46页数学学报(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.11171027 and 11361020);the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120003110003);the Fundamental Research Funds for Central Universities of China(Grant Nos.2012LYB26,2012CXQT09 and lzujbky-2014-18)
摘 要:Let X be a space of homogenous type and ψ: X × [0,∞) → [0,∞) be a growth function such that ψ(·,t) is a Muckenhoupt weight uniformly in t and ψ(x,·) an Orlicz function of uniformly upper type 1 and lower type p ∈(0,1].In this article,the authors introduce a new Musielak–Orlicz BMO-type space BMOψA(X) associated with the generalized approximation to the identity,give out its basic properties and establish its two equivalent characterizations,respectively,in terms of the spaces BMOψA,max(X) and BMOψA(X).Moreover,two variants of the John–Nirenberg inequality on BMOψA(X) are obtained.As an application,the authors further prove that the space BMOψΔ1/2(Rn),associated with the Poisson semigroup of the Laplace operator Δ on Rn,coincides with the space BMOψ(Rn) introduced by Ky.Let X be a space of homogenous type and ψ: X × [0,∞) → [0,∞) be a growth function such that ψ(·,t) is a Muckenhoupt weight uniformly in t and ψ(x,·) an Orlicz function of uniformly upper type 1 and lower type p ∈(0,1].In this article,the authors introduce a new Musielak–Orlicz BMO-type space BMOψA(X) associated with the generalized approximation to the identity,give out its basic properties and establish its two equivalent characterizations,respectively,in terms of the spaces BMOψA,max(X) and BMOψA(X).Moreover,two variants of the John–Nirenberg inequality on BMOψA(X) are obtained.As an application,the authors further prove that the space BMOψΔ1/2(Rn),associated with the Poisson semigroup of the Laplace operator Δ on Rn,coincides with the space BMOψ(Rn) introduced by Ky.
关 键 词:Growth function BMO-type space approximation to the identity John–Nirenberg inequality Carleson measure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15