检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qin WANG Wenjing WANG Xianjin WANG
机构地区:[1]Research Center for Operator Algebras, Department of Mathematics, East China Normal University [2]Department of Applied Mathematics, Donghua University [3]College of Mathematics and Statistics, Chongqing University
出 处:《Chinese Annals of Mathematics,Series B》2014年第5期751-760,共10页数学年刊(B辑英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.11231002,10971023,10901033,61104154);the Fundamental Research Funds for Central Universities of China;the Shanghai Shuguang Project(No.07SG38)
摘 要:The notions of metric sparsification property and finite decomposition complexity are recently introduced in metric geometry to study the coarse Novikov conjecture and the stable Borel conjecture. In this paper, it is proved that a metric space X has finite decomposition complexity with respect to metric sparsification property if and only if X itself has metric sparsification property. As a consequence, the authors obtain an alternative proof of a very recent result by Guentner, Tessera and Yu that all countable linear groups have the metric sparsification property and hence the operator norm localization property.
关 键 词:Metric space Metric sparsification Asymptotic dimension Decomposi- tion complexity Permanence property
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.220