检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李小民[1] 杜占龙[1] 郑宗贵 张国荣 毛琼[1]
机构地区:[1]军械工程学院无人机工程系,石家庄050003 [2]第二炮兵研究院,北京100085 [3]厦门警备区,厦门361003
出 处:《仪器仪表学报》2014年第10期2248-2255,共8页Chinese Journal of Scientific Instrument
基 金:总装院校科技创新工程(ZYX12080008)项目
摘 要:针对模拟电路中不可直接测量故障元件定位和参数估计问题,提出一种基于强跟踪平方根容积卡尔曼滤波(STSCKF)和χ2检验的故障辨识算法。根据强跟踪滤波理论,将χ2检验引入到强跟踪SCKF的残差异常检测中,解决了强跟踪SCKF缺乏故障定位能力的问题。改进传统的χ2检验法,增强其对缓变故障的检测灵敏性。首先利用改进型χ2检验法检测不同故障模型的STSCKF残差输出,确定故障元件,然后采用STSCKF对故障元件参数进行估计。有源滤波电路仿真模型和某型无人机发射机实际故障数据的实验结果表明,相比于传统的χ2检验法,改进型χ2检验能更早地定位故障参数,STSCKF估计误差分别低于强跟踪无迹卡尔曼滤波(STUKF)估计误差的90%和普通SCKF估计误差的5%。Aiming at the unmeasured faulty component location and parameter estimation issue of analog circuit, a fault identification al- gorithm based on strong tracking square-root cubature Kalman filter (STSCKF) and χ2test is proposed. According to strong tracking filter theory, the χ2test is introduced to residual abnormal checking of strong tracking SCKF, which solves the problem that strong tracking χ 2 SCKF lacks the ability to locate fault. The tradmonal χ2 test is improved to increase its detecting sensitivity to slow changing fault. Firstly, the improved X test is utilized to locate the faulty component via detecting the STSCKF residual outputs generated with different faulty models. Then, the faulty component parameter is estimated with STSCKF. The experiment results of active filter circuit simulation model and the actual failure data from a certain unmanned aerial vehicle (UAV) transmitter show that compared with traditional χ2 test χ 2 method, the improved X test can locate the faulty parameter earlier. The STSCKF estimation error is less than 90% of the STUKF ( strong tracking unscented Kalman filter) estimation error and 5% of conventional SCKF estimation error.
关 键 词:强跟踪滤波 状态和参数联合估计 平方根容积卡尔曼滤波(SCKF) 残差检验
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28