检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨静[1] 邱孟通[1] 程引会[1] 孙蓓云[1] 聂鑫[1] 朱志臻[1]
机构地区:[1]西北核技术研究所强脉冲辐射环境模拟与效应国家重点实验室,西安710024
出 处:《现代应用物理》2014年第3期218-222,232,共6页Modern Applied Physics
摘 要:采用时间步进法求解时域电场积分方程时,若时间维度上采用不等长网格进行剖分,能减少未知量个数,但将造成插值无法进行。为解决这一问题,利用满二叉树的中序遍历对求解的时间与空间顺序进行重排,形成了不等长时间步步进法。用该方法对线天线及锥板型电磁脉冲模拟器天线的电流进行了计算,将计算结果与用均匀时间网格模型及成熟软件CST计算所得结果进行了对比,三种方法的计算结果一致,证明了该方法的可行性。该方法对锥板型模拟器天线算例的计算时间仅为均匀时间步步进法的41.16%,说明该方法提高了计算效率。最后,给出了该方法与均匀时间步步进法在求解时未知量个数的比值,证明了当空间网格不均匀时,该方法能有效地节约计算量。When using Marching-on-in-Time(MOT) method to solve time domain electric field integral equations,if the time axis of the model is divided by varying steps,the number of the cells needed for calculation will be reduced,but the interpolation will be impossible. To solve this problem,we use inorder traversal of the full binary tree to re-arrange the calcu-lation sequence of time and space,thus fulfill the interpolation.The currents of the linear antenna and the conical-plate electromagnetic pulse simulator are calculated using this Marc-hing-on-in-Time-varying step method.The results are in accordance with those obtained by the MOT method with uniform time steps and the simulation results by the well-known soft-ware CST,but time-consuming is only 41.16% of that by the MOT method with uniform time steps for the current calculation of the conical-plate electromagnetic pulse simulator.At last,the ratio of the number of unknowns in our method to that in the MOT method with u-niform time steps is given out to show our method will save computational cost.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.31.119