检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学移动通信技术重庆市重点实验室,重庆400065
出 处:《电讯技术》2014年第10期1349-1353,共5页Telecommunication Engineering
基 金:国家科技重大专项(2013ZX03003014-004;2011ZX03003-003-02)~~
摘 要:为了解决实际OFDM通信系统中信道稀疏度未知的不足,提出将弱选择正则化正交匹配追踪算法用于估计稀疏信道。算法在不知晓信道稀疏度的情况下,对不同迭代残差与测量矩阵中原子的相关系数进行判定后,根据原子的弱选择准则灵活地确定出表示信道冲激响应的原子候选集,进而利用正则化原则从候选集中挑选出表示信道冲激响应的最优原子组,逐步实现精确重建。仿真结果和理论分析表明:与正则化正交匹配追踪算法相比,相同条件下改进算法可以获得更低的均方误差和误比特率;另外,算法无需将信道稀疏度作为先验信息,实用性更强。To overcome the drawback that the sparsity of channel impulse response is usually unknown in existing Orthogonal Frequency Division Multiplexing( OFDM) systems,a weak selected regularized orthogo-nal matching pursuit algorithm is used for estimating sparse channel. Without the knowledge of the sparsity of channel,the algorithm judges the relevance coefficients between different iterative residue and atoms of measurement matrix,determines the number of atoms and the candidate atoms of the channel impulse re-sponse flexibly on the basis of a weak selection criterion,and then selects an optimal atom set for the chan-nel impulse response from the candidate atoms according to the regularization principle,thus achieving ac-curate reconstruction progressively. Simulation results and theoretical analysis show that, compared with regularized orthogonal matching pursuit( OMP) algorithms,the proposed algorithm gets a much lower mean square error and bit error rate under the same condition;besides,as the algorithm does not need the chan-nel sparsity as a priori information,it is much suitable for real application.
关 键 词:OFDM系统 压缩感知 稀疏信道估计 弱选择 正则化正交匹配追踪
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3