基于帕累托最优的云资源调度研究  被引量:5

Research of cloud resource allocation based on Pareto optimality

在线阅读下载全文

作  者:边根庆[1] 张文敬[1] 邵必林[1] 龚培娇 

机构地区:[1]西安建筑科技大学信息与控制工程学院,西安710055

出  处:《计算机工程与应用》2014年第19期70-73,共4页Computer Engineering and Applications

基  金:国家自然科学基金(No.61073196);陕西省自然科学基础研究计划项目(No.2011JM8026);陕西省教育厅自然科学专项基金项目(No.11JK0982)

摘  要:针对在云环境中,服务资源在各用户间难以实现最优动态分配的问题,利用帕累托最优理论与粒子群优化算法相互结合应用于云计算模型中,对各种服务资源的效用进行最优化配置,最终使资源利用率达到一个最优的状态。通过CloudSim对云服务资源调度进行仿真实验,结果表明,采用帕累托最优算法优化后的云计算模型具有更好的系统性能,使得资源的调度和配置达到最优。In the cloud environment, service resources are hard to realize the optimal dynamic allocation in each user. The paper combines Pareto optimality theory and particle swarm optimization algorithm with each other which have applied in the cloud computing model about the above problem, to optimization configuration for the utility of various service resources,and finally make the utilization rate of resources achieve an optimal state, and make a simulation experiment of cloud service resources scheduling through CloudSim. The results show that the cloud computing model adopted Pareto optimality algorithm has better performance than before, and the configuration of resources has been achieved the optimal.

关 键 词:云计算 帕累托最优 服务资源 粒子群优化算法 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象