检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学雷达信号处理国防科技重点实验室,陕西西安710071
出 处:《系统工程与电子技术》2014年第11期2122-2126,共5页Systems Engineering and Electronics
基 金:国家自然科学基金(61301281)资助课题
摘 要:标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步初始化的高斯混合CPHD滤波器。该滤波器利用位置上远离当前时刻估计状态的观测值单步初始化新生目标。此外,多普勒信息一方面被用来初始化新生目标的速度,另一方面在滤波器更新步骤中,多普勒速度和位置观测信息采用串行更新方法处理。仿真结果表明,所提算法在目标数的估计精度和优化子模式分配距离方面优于已有算法。The standard cardinalized probability hypothesis density (CPHD)filter is a promising algorithm for multi-target tracking.However,due to its assumption that the target birth intensity is known a priori,it cannot work well in the situations where targets can appear anywhere in the surveillance region.To solve this problem,a one-step initializing Gaussian mixture CPHD (GMCPHD)filter is proposed to adaptively initialize the newborn targets using the measurements far away from the current estimated multi-target states.Furthermore, Doppler information (DI)is used to initialize the velocities of the newborn targets,and in the update step position and Doppler measurements are incorporated in a serial process.Simulations show that the proposed algorithm can effectively initialize the newborn targets and improve the accuracy of target number estimation as well as the optimal subpattern assignment distance when compared with the existing algorithm.
关 键 词:多目标跟踪 带势概率假设密度 单步初始化 多普勒信息
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15