检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算数学》2014年第4期393-406,共14页Mathematica Numerica Sinica
基 金:国家自然科学基金(11071123)资助项目
摘 要:本文在局部分数阶导数定义的基础上给出了高阶局部分数阶导数定义,并据此得到了一般形式的分数阶Taylor公式.用该公式给出了分数阶光滑函数线性和二次插值公式余项的表达式,并进一步导出了分段线性插值的收敛阶估计.针对分数阶导数临界阶计算困难的问题,本文利用线性插值余项设计了一种外推算法,能够比较准确地求出函数在某点的局部分数阶导数的临界阶.最后通过编写算法的Mathematica程序,验证了理论分析的正确性,并用实例说明了算法的有效性.This paper presents a definition for high order local fractional derivatives based on the local fractional derivative and from which a general form of the fractional Taylor's expansion is derived. The formula is used to derive the remainder expansions of linear and quadratic interpolations for fractional smooth functions. Further, the convergence order of piecewise linear interpolation for fractional smooth functions is obtained. For the problem of how to compute the critical orders efficiently, this paper designs an extrapolation algorithm to accurately evaluate the critical orders of local fractional derivative at the point where the function is not sufficiently smooth by using the remainder of linear interpolation. Finally, the correctness of the theoretical analysis is verified by implementing Mathematica program. Numerical examples also show that the method is effective.
关 键 词:局部分数阶导数 分数阶Taylor公式 线性和二次插值余项 临界阶估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.102.192