检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王春暖[1] 秦波[1,2] 秦岩[3] 袁媛[1] 吴庆朝 张文兴[2]
机构地区:[1]包头职业技术学院,内蒙古包头014010 [2]内蒙古科技大学机械工程学院,内蒙古包头014030 [3]浙江大学控制科学与工程学系,杭州310000
出 处:《组合机床与自动化加工技术》2014年第10期69-72,共4页Modular Machine Tool & Automatic Manufacturing Technique
基 金:获内蒙古自然科学基金重大项目(2011ZD08)的部分资助
摘 要:热误差是影响数控机床加工精度的主因,为提高数控机床热误差模型的预测精度,提出了基于改进粒子群优化BP神经网络的数控机床热误差建模预测方法。针对BP易陷入局部最优、收敛速度慢,在标准粒子群算法的基础上,改进粒子的速度与位置更新策略,在此基础上优化BP神经网络的阈值和权值,并建立数控机床热误差预测模型;借助于MATLAB完成仿真实验,结果表明,与标准的BP神经网络和支持向量机相比,基于改进粒子群优化BP神经网络的数控机床热误差预测模型精度高、泛化能力强。Thermal error is a primary factor affecting the working accuracy of numerical control machine,whereas it can't be measured on-line. So an accurate predictive error is critical to final product quality. In order to improve the predictive accuracy of thermal error,a predictive method based on improved particle swarm optimized back propagation neural network is proposed in this paper. Because of back propagation neural network has the disadvantages of low convergence rate,easy to fall into local optimization and so on,an improved updating strategy of particle position based on the stand particle swarm method is built. Then with the improved particle swarm algorithm,the threshold and weight of the neural network is optimized to form the thermal error predictive method. The simulation results conducted on MATLAB shows that the proposed thermal error predictive method has a higher predictive accuracy,better generalization ability compared with stand BP neural network and support vector machine.
关 键 词:BP神经网络 改进粒子群算法 热误差补偿 数控机床
分 类 号:TH165[机械工程—机械制造及自动化] TG659[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15