语法和语义相结合的中文对话系统问题理解研究  被引量:6

Question Understanding by Combining Grammar and Semantic for Chinese Dialogue System

在线阅读下载全文

作  者:黄沛杰[1] 黄强[1] 吴秀鹏[1] 吴桂盛 郭庆文[1] 陈楠挺 陈楚萍[1] 

机构地区:[1]华南农业大学信息学院,广东广州510642

出  处:《中文信息学报》2014年第6期70-78,共9页Journal of Chinese Information Processing

基  金:广东省大学生创新训练计划项目(1056412151;1056413096;201410564290);广东省科技计划项目(2012A020602012)

摘  要:针对中文口语问句的表达多样性对对话系统问题理解带来的挑战,该文采用"在语法结构之上获取语义知识"的设计理念,提出了一种语法和语义相结合的口语对话系统问题理解方法。首先人工编制了独立于领域和应用方向的语法知识库,进而通过句子压缩模块简化复杂句子,取得结构信息,再进行问题类型模式识别,得到唯一确定问题的语义组织方法、查询策略和应答方式的句型模式。另一方面,根据领域语义知识库,从源句子中提取相应的语义信息,并根据识别到的句型模式所对应的知识组织方法进行语义知识组织,完成对问句的理解。该文的方法被应用到开发的中文手机导购对话系统。测试结果表明,该方法能有效地完成对话流程中的用户问题理解。To solve the problems caused by diversity and flexibility of Chinese language in question understanding, the paper adopts the strategy of “getting semantic knowledge based on grammar question type structure” ,and pro- poses a question understanding method by combining grammar and semantics for Chinese spoken dialogue system. First, we set up a hand crafted grammar bases working independent of the domain and application direction. Sec- ond, through sentence compression, utterances are simplified to the structure of a sentence. Then question type pat- tern recognition is applied to determining the only question type pattern for the utterance which corresponds to the proper semantic organization method, query strategy and response way. On the other hand, we extract the relevant semantic information from the source utterance according to domain knowledge base. Afterwords, the extracted se mantic information is converted into well-organized semantic knowledge based on the corresponding question type pattern to complete the question understanding. The proposed method is implemented as a Chinese dialogue system for mobile phone shopping guide. Test results demonstrate the efficiency of our approach.

关 键 词:问题理解 对话系统 句型模式 中文 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象