检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学计算机科学与工程学院,成都611731
出 处:《电子科技大学学报》2014年第5期748-753,共6页Journal of University of Electronic Science and Technology of China
摘 要:提出了一种新颖的高阶CRF模型,能够同时获得语义分割和目标检测结果。该高阶CRF模型由低阶能量项和改进目标检测能量项构成。该模型采用了一二阶合并方法和逻辑斯蒂回归,从而降低了由于初始检测不准确而导致的错误识别率。在MSRC 21和PASCAL VOC 2007两组数据库上进行的实验表明,该方法显著优于传统方法。Computer vision algorithms for individual tasks such as object recognition, detection and segmentation have shown impressive results in the recent years. The next challenge is to integrate all these algorithms and address the problem of scene understanding. A new higher order conditional random field (CRF) model is proposed to get semantic segmentation and object detection simultaneously. Specifically, the proposed higher order CRF model consists of low-order potentials and improved detector potentials. To avoid wrong recognition caused by the confidence given by the initial detector, the first-and-second-order pooling and logistic regression are adopted to improve the detector potential. Experimental results show that the proposed model achieves significant improvement over the baseline methods on MSRC 21-class and PASCAL VOC 2007 datasets.
关 键 词:目标检测能量项 一二阶合并 高阶CRF模型 语义分割
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.105.175