检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机辅助设计与图形学学报》2014年第11期2070-2078,共9页Journal of Computer-Aided Design & Computer Graphics
摘 要:为了更好地解决光照变化对人脸识别系统的干扰问题,提出一种融合了NSCT和自适应平滑的算法,以提取带有更多人脸结构信息的光照不变量.首先用NSCT分解对数域人脸图像,并对各高频子带进行NormalShrink阈值滤波;再将滤波后的高频子带和未经处理的低频子带进行逆NSCT处理得到人脸图像的模糊图像;然后对NSCT分解后的低频子带使用自适应平滑提取出低频子带中的人脸细节信息;最后结合该人脸细节信息和模糊图像进行计算,得到人脸图像的光照不变量.该不变量有效地弥补了NSCT方法中缺乏低频子带中的人脸细节信息的不足,提高了人脸信息的利用率.在Yale B和CMU PIE人脸库上的实验结果表明,该算法能够有效地消除光照变化的影响,具有更优的人脸识别性能,提高人脸识别系统的光照鲁棒性.To better handle light changes in face recognition ,a method combining NSCT and adaptive smoothing is proposed ,to extract illumination invariants with more structural information of faces . T he method first decomposes a face image in the logarithmic domain , then applies NormalShrink filtering to each high‐frequency subband .Next ,a blurred face image is obtained by performing inverse NSCT on the filtered high‐frequency and original low‐frequency subbands . After that , adaptive smoothing is used to extract detailed facial information from the original low‐frequency subbands . Finally ,a facial illumination invariant is estimated by combining the detailed facial information and the blurred face image .T he resulting illumination invariant has more detailed facial information in the low‐frequency subbands ,compared with results from NSCT . The proposed method better exploits the structural information of faces .Experiments on Yale B and CM U PIE face databases show that the method effectively eliminates illumination variations ,has better performance compared with existing methods ,and improves the robustness of face recognition systems .
关 键 词:人脸识别 光照不变量 非下采样轮廓波变换 自适应平滑
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31