检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:REN YanXia YANG Ting ZHAO GuoHuan
机构地区:[1]LMAM, School of Mathematical Sciences, Peking University [2]Center for Statistical Science, Peking University [3]Academy of Mathematics and Systems Science, Chinese Academy of Sciences
出 处:《Science China Mathematics》2014年第12期2577-2588,共12页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.11271030 and 11128101);Specialized Research Fund for the Doctoral Program of Higher Education and China Postdoctoral Science Foundation(Grant No.2013M541061)
摘 要:We study the conditional limit theorems for critical continuous-state branching processes with branching mechanism Ф(λ) = λ 1+αL(1/λ), where (α∈ [0, 1] and L is slowly varying at co. We prove that if α ∈ (0, 1], there are norming constants Qt →0 (as t ↑ + ∞) such that for every x 〉 0, Px(QtXt ∈ · |Xt 〉 0) converges weakly to a non-degenerate limit. The converse assertion is also true provided the regularity of ψ at 0. We give a conditional limit theorem for the case α = 0. The limit theorems we obtain in this paper allow infinite variance of the branching process.We study the conditional limit theorems for critical continuous-state branching processes with branching mechanism ψ(λ) = λ1+αL(1/λ), where α∈ [0, 1] and L is slowly varying at ∞. We prove that if α∈(0, 1], there are norming constants Qt→ 0(as t ↑ +∞) such that for every x > 0, Px(QtXt∈·| Xt> 0)converges weakly to a non-degenerate limit. The converse assertion is also true provided the regularity of ψ at0. We give a conditional limit theorem for the case α = 0. The limit theorems we obtain in this paper allow infinite variance of the branching process.
关 键 词:continuous-state branching process conditional laws regular variation
分 类 号:O211.4[理学—概率论与数理统计] O213.2[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171