Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys  

Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys

在线阅读下载全文

作  者:鲁彩江 李平 文玉梅 杨爱超 杨超 王德才 何伟 张吉涛 

机构地区:[1]Research Center of Sensors and Instruments, College of Optoelectronic Engineering,Chongqing University

出  处:《Chinese Physics B》2014年第11期527-531,共5页中国物理B(英文版)

基  金:supported by the National High Technology Research and Development Program of China(Grant No.2012AA040602);the National Natural Science Foundation of China(Grant No.61374217)

摘  要:We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent res- onant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zrl_x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (2s) and saturation magnetization (μtoMs) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,1) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased aME,b and aME,1 due to the largest magnetic grading of λs and μ0Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent aME,b and aME,I at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent res- onant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zrl_x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (2s) and saturation magnetization (μtoMs) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,1) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased aME,b and aME,1 due to the largest magnetic grading of λs and μ0Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent aME,b and aME,I at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.

关 键 词:magnetoelectric effect composite materials high-permeability alloy 

分 类 号:TB33[一般工业技术—材料科学与工程] TG132.2[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象