Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage  被引量:7

Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage

在线阅读下载全文

作  者:Dabin Wang Zhen Geng Cunman Zhang Xiangyang Zhou Xupeng Liu 

机构地区:[1]Clean Energy Automotive Engineering Center, Tongji University [2]School of Automotive Studies, Tongji University [3]School of Materials Science and Technology, Tongji University

出  处:《Journal of Energy Chemistry》2014年第5期601-608,共8页能源化学(英文版)

基  金:supported by the National High Technology Research and Development Program of China(863 Program)(2012AA053305);the International Cooperation Project from Ministry of Science and Technology of China(2010DFA64080)

摘  要:Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.

关 键 词:corncob-derived activated carbon KOH activation activation conditions hydrogen storage 

分 类 号:TQ424.1[化学工程] TQ116.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象