压缩感知的信息论解译  被引量:7

Information-theoretic Interpretations of Compressive Sampling

在线阅读下载全文

作  者:张景雄[1] 阳柯[1] 郭建中[2] 

机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079 [2]武汉纺织大学电子与电气工程学院,湖北武汉430074

出  处:《武汉大学学报(信息科学版)》2014年第11期1261-1268,共8页Geomatics and Information Science of Wuhan University

基  金:国家973计划资助项目(2010CB731905);国家自然科学基金资助项目(41071286);湖北省教育厅基金资助项目(D201416022)~~

摘  要:压缩感知(compressed sensing or compressive sampling,CS)是数据采集与信号重构的新体制,其与信息论的关系是,应该且可以从信息论的角度对CS进行分析,而CS丰富和发展着信息论的内涵和外延。换言之,信息论的一些基本概念和原理(如信源、信道、信源编码、信道编码、率失真、Fano不等式、数据处理定理等)为CS研究提供了理论基础,尤其是在性能限(如采样数)的界定等方面;另一方面,CS提供了采集、存贮、传输、恢复稀疏信号的高效方法,以其独特的理念和算法模式,提供了直接对信息的采样和处理机制,延拓了经典信息论的范畴。本文将梳理和阐释CS和信息论之间的关系,力图从信息论角度揭示CS中的一些基本问题,尤其是CS采样问题,并寻求用信息论指导CS的学习与研究。Compressive samplin or compressed sensing (CS) is a new paradigm for data acquisition and signal recovery. There are two-way relationships between CS and information theory:the former should and can be analyzed from the perspective of the latter,while the latter's content and extent are enriched and broadened by the former. Specifically, some basic concepts and theorems in information theory, such as source, channel, source coding, channel coding, rate distortion, Fano inequality, and the data processing theorem, provide theoretical foundation for research on CS, in particular, that concerning performance limits (e. g. , sampling rates). CS provides a highly efficient strategy for collecting, storing, transmitting, and reconstructing sparse signals through its unique concepts and algorithms, such as the sparsity of real signals (enabling CS sampling at a rate lower than Nyquist rate), the information sensing capacity of random sampling matrices (which preserve information) ; and information reconstruction based on convex optimization (different from signal reconstruction by Sine kernels in the Shannon-Nyquist sampling theorem). Thus, CS is a mechanism for direct information sampling and processing, extending the domain of classic information theory. This paper seeks to clarify and explain the relationships between CS and information theory, revealing some of the fundamental issues in CS, in particular, those concerning CS sampling, and providing guidance for CS research directions.

关 键 词:压缩感知 信息论 稀疏 采样  

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象