检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原铁路局党校,太原030013 [2]北方自动控制技术研究所,太原030006
出 处:《电脑开发与应用》2014年第10期55-58,共4页Computer Development & Applications
摘 要:模糊概念格是利用形式概念分析对不确定模糊信息进行建模的一种理论手段。从领域专家拥有的模糊概念知识中划分模糊概念类,得到构建本体的初始概念类;计算模糊概念与本体概念类间的包含度关系,扩大本体中的概念;发现概念与概念之间的相似度关系,用以学习本体概念之间的关系,实例表明了模糊形式概念分析有助于领域专家在本体学习过程中,挖掘本体概念和本体概念间的关系。Fuzzy concept lattice is a generaltheoretical means, whichmainly focuses on modeling and handling uncertain fuzzy information with formal concept analysis. In this paper, the vague concept classes from the vague concept background knowledge held is divided by the domain experts to obtain the initial concept classes of ontology building. It is calculated inclusion degree relationship between fuzzy concepts and ontology concept classes to expand the ontology concept; discovering the similarity relationship between concepts to study the relationships among ontology concepts. Examples have shown that fuzzy formal concept will help to build the ontology concepts and mine the relationships among ontology concepts for domain experts in the process of ontology learning.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249