交货期问询引发订单不确定性的在线生产排序算法  被引量:3

Online Job Scheduling with Order Uncertainty in Due Date Quotation

在线阅读下载全文

作  者:王静 

机构地区:[1]上海交通大学中美物流研究院,上海200030

出  处:《复旦学报(自然科学版)》2014年第5期584-590,共7页Journal of Fudan University:Natural Science

摘  要:设计了一个启发式算法(SPM)来优化在线订单的接收及生产排序过程,以达到最大化长期单位时间订单收益的目标.所研究问题的背景是单阶段按订单生产(MTO)的制造系统,当顾客到来时,生产商经过决策并问询给顾客严格的交货期,顾客依据该交货期按照一定概率确认订单.SPM算法把新订单自身与当下临时加工序列一同包含在决策机制中,来衡量每一个到达的订单的潜在价值.通过数值仿真实验,在合理的参数设定下,SPM算法相对于FCFS的简单算法对于较为密集订单的处理具有更大的优势,对效益的提升十分显著.In this study, a heuristic algorithm named SPM(Standard Profit Maximization) is designed to optimize the process of accepting and scheduling online orders to maximize the profit per unit time in the long run. The studied problem is set in a single-stage MTO(Make To Order) manufacturing system. When an order arrives, the manufacturer decides to quote an accurate due date to the customer, and the customer confirms the order according to some probability. The algorithm evaluates the potential value of an order by incorporating the order itself into the current temporary schedule. In the computational experiments, SPM significantly outperforms the naive algorithm based on FCFS(First Come First Serve) when the orders arrive at a moderately fast pace.

关 键 词:交货期问询 生产排序 订单不确定 收益管理 

分 类 号:O223[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象