Tip-leakage flow loss reduction in a two-stage turbine using axisymmetric-casing contouring  被引量:9

Tip-leakage flow loss reduction in a two-stage turbine using axisymmetric-casing contouring

在线阅读下载全文

作  者:Wei Zuojun Qiao Weiyang Shi Peijie Chen Pingping Zhao Lei 

机构地区:[1]School of Power and Energy, Northwestern Polytechnical University [2]Institute of Propulsion Technology, German Aerospace Center

出  处:《Chinese Journal of Aeronautics》2014年第5期1111-1121,共11页中国航空学报(英文版)

摘  要:In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuses on the effects of contoured axisymmetric-casing on the blade tipleakage flow. While the size of tip clearance remains the same as the original design, the rotor casing and the blade tip are obtained with the same contoured arc shape. Numerical calculation results show that a promotion of 0.14% to the overall efficiency is achieved. Detailed analysis indicates that it reduces the entropy generation rate caused by the complex vortex structure in the rotor tip region, especially in the tip-leakage vortex. The low velocity region in the leading edge(LE) part of the tip gap is enlarged and the pressure side/tip junction separation bubble extends much further away from the leading edge in the clearance. So the blocking effect of pressure side/tip junction separation bubble on clearance flow prevents more flow on the tip pressure side from leaking to the suction side, which results in weaker leakage vortex and less associated losses.In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuses on the effects of contoured axisymmetric-casing on the blade tipleakage flow. While the size of tip clearance remains the same as the original design, the rotor casing and the blade tip are obtained with the same contoured arc shape. Numerical calculation results show that a promotion of 0.14% to the overall efficiency is achieved. Detailed analysis indicates that it reduces the entropy generation rate caused by the complex vortex structure in the rotor tip region, especially in the tip-leakage vortex. The low velocity region in the leading edge(LE) part of the tip gap is enlarged and the pressure side/tip junction separation bubble extends much further away from the leading edge in the clearance. So the blocking effect of pressure side/tip junction separation bubble on clearance flow prevents more flow on the tip pressure side from leaking to the suction side, which results in weaker leakage vortex and less associated losses.

关 键 词:Axisymmetric-casing contouring Leakage Leakage flow Loss reduction Tip clearance Turbines 

分 类 号:V231[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象