机构地区:[1]School of Resource and Environmental Sciences,Wuhan University [2]Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences [3]Academy of Disaster Reduction and Emergency Management,Beijing Normal University [4]National Drought Mitigation Center,School of Natural resources,University of Nebraska-Lincoln Lincoln 68588,USA [5]College of Architecture,University of Nebraska-Lincoln Lincoln68588,USA [6]College of Global Change and Earth System,Beijing Normal University
出 处:《Chinese Geographical Science》2014年第6期694-705,共12页中国地理科学(英文版)
基 金:Under the auspices of National Natural Science Foundation of China(No.41171403,41301586);China Postdoctoral Science Foundation(No.2013M540599,2014T70731);Program for New Century Excellent Talents in University(No.NCET-08-0057)
摘 要:Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environ- ment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local govern- ments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can pro- vide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standard- ized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of fre- quency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theo- retical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.
关 键 词:streamflow drought meteorological drought Standardized Precipitation Index (SPI) Standardized Runoff Index (SRI) timelag Jinghe River Basin
分 类 号:P426.616[天文地球—大气科学及气象学] S715.5[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...