检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段晓峰[1,2] 许学工[1] 陈满春[2] 李响[2]
机构地区:[1]北京大学城市与环境学院,地表过程分析与模拟教育部重点实验室,北京100871 [2]国家海洋信息中心,天津300171
出 处:《北京大学学报(自然科学版)》2014年第6期1065-1070,共6页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:国家自然科学基金(40830746;41271102);中国博士后科学基金(2012M510258)资助
摘 要:在充分考虑长时间序列潮位具有周期性、趋势性和随机性特征的基础上,建立一套基于随机动态预测模型的海平面变化分析方法。模型中的周期项模拟首次采用小波分析与谱分析相结合的方法;趋势项采用逐步回归法拟合;残差序列采用自回归移动平均混合模型进行拟合;三项叠加建立随机动态预测模型,参数的确定采用非线性最小二乘迭代法。应用塘沽验潮站57年的月平均海平面高度数据进行案例分析,通过实测数据验证和预测精度统计学检验,表明此方法对海平面变化的模拟与预测具有较高精度,可为海平面上升预测研究提供有效可行的借鉴与范例。Based on the periodic, trending, and stochasticcharacteristics of secular tide gauge data, a predictive methodology using stochastic-dynamic model was present to the sea level change research. The periodic term was resolved by wavelet and spectrum analysis. Stepwise regression was applied to the trending term analysis. The residual sequence was fitted by autoregression moving average model. Least-squares iteration method was applied for parameter estimation ofthe superposition model, which was composed of significant period model, trending term model and the residual sequenceautoregression moving average model. The stochasticdynamic model is applied to 57 years' monthly mean sea level data from Tanggu tide gauge for case study. The results show that the predictive methodology based on stochastic-dynamic model is feasible and efficient in sea level change prediction. Considering the high accuracy of modeling and predicting, this methodology can be used as a reference for future studies in sea level change.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.199.3