高速医药自动化生产线大输液视觉检测与识别技术  被引量:14

Visual detection and recognition for medical infusion automatic production lines

在线阅读下载全文

作  者:张辉[1,2] 王耀南[2] 吴成中[2] 周博文[3] 陈铁健[2] 

机构地区:[1]长沙理工大学电气与信息工程学院,湖南长沙410004 [2]湖南大学电气与信息工程学院,湖南长沙410004 [3]清华大学电子工程系,北京100084

出  处:《控制理论与应用》2014年第10期1404-1413,共10页Control Theory & Applications

基  金:国家自然科学基金资助项目(61401046);国家科技支撑计划资助项目(2015BAF11B00);湖南省自然科学基金资助项目(13JJ4058);湖南省教育厅科学研究青年基金资助项目(13B135)

摘  要:药品灌装质量检测是制药过程的一个重要环节,是药品质量的可靠保证.针对医药大输液可见异物视觉检测的需求,研制出基于多视觉的大输液自动化检测识别系统.首先研究了医药图像的高速高可靠性预处理方法,有效消除由机械振动和跟踪引起的干扰.研究了以药液微小异物为目标的改进模糊细胞神经网络图像分割方法,揭示了液体中异物目标、微粒、气泡等产生机理,综合分析目标的形态特征、边缘轮廓、运行特征等,得到各种异物的类型特征以及在序列图像中的动态变化信息.最后,使用序列图像的目标特征,基于支持向量机的AdaBoosting分类算法进行异物识别,结果证明本文提出的方法检测识别率高,对工程设备的研制具有重要意义.The detection of filling quality for pharmaceutical is an important element in pharmaceutical process, whichguarantees the medication security. According to the detection demand of visible foreign substances for glass bottle medicalinfusion, a high-speed automated foreign substance detection system based on the machine vision consisting of multi-typesimage acquisition devices is developed. Firstly, a high-speed high reliability preprocessing method for medical infusionimages is proposed to eliminate the disturbance caused by mechanical vibration and tracking. Then, an improved fuzzycellular neural network (1FCNN) is developed for image segmentation to effectively solve the problem of edge detection,which reveals the mechanism of foreign substances, particles as well as liquid bubbles, comprehensively analyzes the mor-phological boundary of the target operating characteristics, and obtains various characteristics and the dynamic changeinformation in image sequences. Finally, the classification approaches of support-vector-machine (SVM) and AdaBoost-ing, based on image sequences target characteristics, is employed to recognize multiple tiny insoluble foreign substances.Experimental results indicate that the developed approach is efficient and increases the recognition rate, which is of greatsignificance to the development of engineering equipment.

关 键 词:医药大输液 视觉检测 改进模糊细胞神经网络 异物分类识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象