机构地区:[1]State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences [2]University of Chinese Academy of Sciences [3]Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration,Zhejiang A & F University
出 处:《Pedosphere》2014年第6期776-782,共7页土壤圈(英文版)
基 金:Supported by the National Key Basic Research Program(No.2013CB127401);the Strategic Priority Research Program of Chinese Academy of Science(No.XDB15030300);the National Natural Science Foundation of China(Nos.41001172 and 41371289)
摘 要:Fertilizer application efficiently increases crop yield, but may result in phosphorus(P) accumulation in soil, which increases the risk of aquatic eutrophication. Arbuscular mycorrhizal fungi(AMF) inoculation is a potential method to enhance P uptake by plant and to reduce fertilizer input requirements. However, there has been limited research on how much P application could be reduced by AMF inoculation. In this study, a pot experiment growing asparagus(Asparagus officinalis L.) was designed to investigate the effects of AMF inoculation and six levels of soil Olsen-P(10.4, 17.1, 30.9, 40.0, 62.1, and 95.5 mg kg-1for P0, P1, P2, P3, P4 and P5treatments, respectively) on root colonization, soil spore density, and the growth and P uptake of asparagus. The highest root colonization and soil spore density were both obtained in the P1treatment(76% and 26.3 spores g-1soil, respectively). Mycorrhizal dependency significantly(P < 0.05) decreased with increasing soil Olsen-P. A significant correlation(P < 0.01) was observed between mycorrhizal P uptake and root colonization, indicating that AMF contributed to increased P uptake and subsequent plant growth.The quadratic equations of shoot dry weight and soil Olsen-P showed that AMF decreased the P concentration of soil required for maximum plant growth by 14.5% from 67.9 to 59.3 mg Olsen-P kg-1. Our results suggested that AMF improved P efficiency via increased P uptake and optimal growth by adding AMF to the suitable P fertilization.Fertilizer application efficiently increases crop yield, but may result in phosphorus(P) accumulation in soil, which increases the risk of aquatic eutrophication. Arbuscular mycorrhizal fungi(AMF) inoculation is a potential method to enhance P uptake by plant and to reduce fertilizer input requirements. However, there has been limited research on how much P application could be reduced by AMF inoculation. In this study, a pot experiment growing asparagus(Asparagus officinalis L.) was designed to investigate the effects of AMF inoculation and six levels of soil Olsen-P(10.4, 17.1, 30.9, 40.0, 62.1, and 95.5 mg kg^-1for P0, P1, P2, P3, P4 and P5treatments, respectively) on root colonization, soil spore density, and the growth and P uptake of asparagus. The highest root colonization and soil spore density were both obtained in the P1treatment(76% and 26.3 spores g^-1 soil, respectively). Mycorrhizal dependency significantly(P 〈 0.05) decreased with increasing soil Olsen-P. A significant correlation(P 〈 0.01) was observed between mycorrhizal P uptake and root colonization, indicating that AMF contributed to increased P uptake and subsequent plant growth.The quadratic equations of shoot dry weight and soil Olsen-P showed that AMF decreased the P concentration of soil required for maximum plant growth by 14.5% from 67.9 to 59.3 mg Olsen-P kg^-1. Our results suggested that AMF improved P efficiency via increased P uptake and optimal growth by adding AMF to the suitable P fertilization.
关 键 词:ASPARAGUS mycorrhizal dependence phosphorus-utilization efficiency root colonization spore density
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...