检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严冬[1] 周建中[1] 孙怀卫[1] 王学敏[1]
机构地区:[1]华中科技大学水电与数字化工程学院,武汉430074
出 处:《农业工程学报》2014年第21期91-98,共8页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金(41001379;51239004);长江科学院开放研究基金(CKWV2012316/KY)
摘 要:为了解决密不可分的干旱区水资源和农业问题,使虚拟水流动与水资源量和经济规模相适应,该文借鉴基尼系数概念评价虚拟水流动的区域均衡性,并以尽量提高区域均衡性为目标,建立融合了粮食流通模型的农业用水综合调控模型,从而在控制灌溉水使用总量的前提下,通过调整粮食生产耗水和产量来改变粮食流通格局,进而优化虚拟水流动状态。在甘肃的应用研究证明该方法可在满足用水总量限制要求前提下,使虚拟水流动均衡性较调控前有明显改善,实现了干旱区实体水和虚拟水的统一管理。这对促进干旱区不同地区间的协作、缓解水资源利用与粮食生产间的矛盾,具有重要的理论指导意义。To solve problems of lack of water resources for agriculture in arid areas, it is necessary to utilize and compare the advantage of water using in different areas that are linked together through the commodity trade. The active regulation of commodity trade and water consumption in production is capable to build rational virtual water use embodied in commodity trade. It will ease the conflict between water supply and demand. This requires the implement of integrated management about real water and virtual water to achieve regional equilibrium of virtual water utilization. Considering the water utilization should fit the scale of water resources endowment and economy, the equilibrium level based on Gini coefficient is used to evaluate the regional equilibrium of virtual water flow against water resources endowment and Gross Domestic Product. To improve the regional equilibrium, a comprehensive regulation model about agricultural water consumption was setup. The decision variables belonged to the aspects of water use efficiency, plant area of grain and yield level per unit area. Through the adjustment of the decision variable, the relevant equilibrium level can be calculated using a sub-model. In the sub-model, based on the equilibrium analysis of grain supply-demand, the grain flow direction and quantity were estimated using the optimization model for minimizing the total transportation costs. Combined with the agricultural water consumption per unit mass evaluation on every district, the amounts of virtual water flow among districts, and the total amounts of virtual water inflow and outflow of every district were setup. Then the equilibrium level about water resources endowment and Gross Domestic Product were calculated and became the output of the sub-model. To minimize the value of equilibrium level, the particle swarm optimization was used to search the non-inferior solutions about the combination of various decision variables. Then the final solution was selected in the non-inferior solutions. To test the per
分 类 号:TV213.4[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3