MIMO-OFDM系统中联合时域和空间域信号处理的改进PTS算法  被引量:1

Modified PTS algorithm combining time and space domain signal processing in MIMO-OFDM system

在线阅读下载全文

作  者:杨霖[1] 胡武君[1] 何向东[1] 

机构地区:[1]电子科技大学通信抗干扰技术国家重点实验室,四川成都611731

出  处:《系统工程与电子技术》2014年第12期2526-2532,共7页Systems Engineering and Electronics

基  金:国家自然科学基金(61370012);中央高校基本科研业务费专项资金(ZYGX2012J141)资助课题

摘  要:为了降低多输入多输出正交频分复用(multiple input multiple output orthogonal frequency division multiplexing,MIMO-OFDM)系统中传统部分传输序列(partial transmit sequence,PTS)算法的计算复杂度,提出了联合时域和空间域信号处理的改进PTS算法。在时域信号处理部分,通过信号子块循环移位实现备选序列的增加;在空间域部分,利用天线间信号子块交换实现峰均功率比(peak to average power ratio,PAPR)抑制。同时在接收端,利用子块相位旋转引起的相位差异,本方法通过比较接收信号与星座点的距离,可以实现信号的盲检测,从而有效提高MIMO-OFDM系统的频谱利用率。仿真结果表明,提出的方法能有效地抑制MIMO-OFDM信号的PAPR,而且明显降低了传统PTS算法的计算复杂度,同时可获得跟传统PTS方法已知边带副信息时相似的比特误码率(bit error rate,BER)性能。To reduce the computational complexity of the traditional partial transmit sequence (PTS)algo-rithm in the multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM)system, a modified PTS algorithm combining time domain and space domain signal processing is proposed.In the time domain,sub-blocks are operated by cyclic shift to achieve more candidate sequences.In the space domain,sub-blocks are switched between the antennas to suppress the peak to average power ratio (PAPR).At the receiver part,the signals at each sub-block multiply by different phase rotation factors and the sum of distances between the signal and its nearest constellation points is calculated to realize the blind detection of the signals.The simu-lation results show that the proposed method can reduce the PAPR effectively.In addition,compared with the traditional PTS algorithm,the proposed method can reduce the complexity significantly and obtain similar bit er-ror rate (BER)performance.

关 键 词:部分传输序列 循环移位 交换 盲检测 PARTIAL transmit sequence (PTS) 

分 类 号:TN919.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象