检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学计算机科学与技术学院,辽宁大连116024
出 处:《计算机应用》2014年第12期3433-3437,3474,共6页journal of Computer Applications
基 金:辽宁省自然科学基金资助项目(20130200029)
摘 要:针对多源异构蛋白质相互作用网络信息量大、数据冗余导致预测结果不能充分反映数据分布信息的问题,将功能类别网络和蛋白质相互作用网络相结合,提出基于有向双关系图和多核融合的多标记学习算法。首先,构建基于含有损失函数的目标方程和最大期望算法的自适应模型;然后,利用图优化策略融合功能类别和蛋白质相互作用网络构成的多个关联矩阵;最后,将融合后的关联矩阵代入模型中预测蛋白质功能。在Yeast和Mouse的蛋白质多源异构数据上的实验结果表明,提出的方法具有预测准确率高、标签损失率低等优势。In view of the problem that protein interaction network of muhiple kernels from heterogeneous data sources contains huge amount of information. Due to data redundancy, the predicted results could not fully reflect the distribution of data. The functional categories network and protein interaction networks were combined, a multi-label learning algorithm was proposed based on the directed bi-relational graph theory and multi-kernel fusion. First, an adaptive learning model was built by the loss function of equation and expectation maximization algorithm. Then, multiple associative matrices were obtained by using the graph optimization strategy to fuse the functional categories and protein interaction networks. Finally, the prediction model was built by the associative matrices and adaptive learning model. The experimental results using multiple heterogeneous protein data sources of Yeast and Mouse show that the proposed method has higher prediction accuracy and lower loss rate of label.
关 键 词:有向双关系图 多核融合 半监督学习 多标记 蛋白质功能预测
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.201.213