检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学船舶工程学院,哈尔滨150001 [2]德州农工大学土木工程系,大学城77843
出 处:《上海交通大学学报》2014年第4期570-575,582,共7页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金资助项目(51379051;90905022);海洋工程国家重点实验室(上海交通大学)开放课题项目资助(1208)
摘 要:将浮式风机系统中浮体的水动力分析模块与风力发电机的空气动力分析模块整合,提出了适用于深水浮式风机系统的全耦合动力响应分析方法.浮体水动力计算采用基于二阶精度的混合波浪模型(Hybrid Wave Model)的MORISON公式,锚泊系统采用细长杆理论通过非线性有限元方法实现,风机系统的空气动力分析采用基于多体气动弹性理论的FAST模块.以浮体控制方程为主体,通过模块间的载荷与位移传递在每个时间步上迭代求解,形成完全耦合的时域分析方法.通过对某SPAR风机系统在随机海况下进行了系统水动力响应分析,并与现有的三维势流理论的结果进行了比较,验证了数值分析方法的有效性.最后,对系统的动力响应进行了水-气动力的全耦合数值分析.结果表明,该方法能有效地分析浮式风机各子系统间的混合动力作用,可用于海洋风电系统开发.The method to perform coupling analysis of offshore floating wind turbines (OFWT) was devel- opted by integrating hydrodynamic and aerodynamic modules in time domain. The Morison method was used for hydrodynamic computation of floating body and its mooring system, in which the relative velocity between structure elements and waves was implemented by the hybrid wave model with second order accu racy. Slender rods theories were applied to the mooring systems, and the wind turbine was modeled by the aero-elastic code-FAST. Loads and displacements were transferred between the submodules based mainly on floating body control equations in every time step by the Newmark- 13 method. Motion responses of a 5 MW 3 blades spar type OFWT was predicted with and without FAST to validate the combined program. A comparison of results from the available 3D linear potential flow method in a random sea condition shows that the code is capable of hydro-aero dynamic analysis of OFWT.
分 类 号:P752[天文地球—海洋科学] TK89[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15