基于遗传算法的支持向量机在径流中长期预报中的应用  被引量:11

Application of Support Vector Machine Based on Genetic Algorithm to Mid-term and Long-term Run-off Prediction

在线阅读下载全文

作  者:徐莹[1] 王嘉阳[1] 苏华英 

机构地区:[1]大连理工大学,辽宁大连116024 [2]贵州电力通信局,贵州贵阳550002

出  处:《水利与建筑工程学报》2014年第5期42-45,72,共5页Journal of Water Resources and Architectural Engineering

摘  要:支持向量机在径流中长期预报的应用中,普遍采用网格搜索法率定其参数,存在耗时较长、参数选取不当而导致预报精度低等问题,针对该问题提出了一种基于遗传算法的支持向量机模型,该模型结合遗传算法收敛速度快的特点对支持向量机参数进行优化选择,实现参数的全局自动化选取。应用乌江流域某电站的径流预报结果显示,相对于基于网格搜索参数寻优的支持向量机模型及神经网络模型,基于遗传算法参数寻优的支持向量机模型预报精度更高,泛化能力更强。In the predication of mid-term and long-term run-off by using the support vector machine (SVM ) ,the grid-re-search method is commonly applied for parameter calibration .This method is time-consuming and often causes low accu-racy in predication if the parameters were calibrated unwisely .To solve these problems ,a SVM model based on genetic algorithm was proposed in this paper .This model ,which adopted the rapid convergence rate of the genetic algorithm ,re-alized optimized parameter calibration ,and made it possible for overall automatic parameter calibration .A case study of a hydropower station on Wujiang River was presented to verify the feasibility of the proposed method .The comparison of the forecast results between the proposed method and the SVM method based on grid-research and neural network algorithm indicates that the proposed method possesses higher forecasting accuracy and stronger generalization ability .

关 键 词:支持向量机 遗传算法 参数寻优 径流预报 

分 类 号:P334.2[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象