检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学数学与计算机科学学院,福州350108
出 处:《中国体视学与图像分析》2014年第2期112-120,共9页Chinese Journal of Stereology and Image Analysis
基 金:福建省自然科学基金(2013J01186;2012J01263)
摘 要:目的针对图割(GrabCut)算法对于前景与背景颜色特征相差不大容易发生分割错误,SLIC(simple linear iterative clustering)预分割在对应情况下边缘不够准确以及时间复杂度较高等问题,提出一种融合特征的自适应超像素GrabCut算法。方法该算法首先将图像转化到Lab色彩空间,并对原图像提取Gabor纹理特征,综合得到融合特征;再利用融合特征改进SLIC方法,使用改进方法对图像进行预分割,提取超像素区域,构建区域邻接图;然后保存每个超像素区域的融合特征,对两种特征分别进行高斯混合模型(Gaussian mixture model,简称GMM)建模,并利用相对熵自适应调整分割过程中混合特征的权重,优化Gibbs能量函数;最后执行迭代图割算法,得出分割结果。结论实验结果表明,本算法对颜色特征不佳的情况下有较好的分割效果,并通过改进的SLIC预分割提高了算法的执行效率,降低了迭代次数,前景物体边缘也得到较好的保护。Objective To solve some problems of segmentation and pre-segmentation, such as the GrabCut algorithm is sometime to get wrong answer when the foreground color characteristics and the background characteristics are almost the same. SLIC algorithm gets inaccurate edges and use high time complexity. Above all, we propose an adaptive super-pixels graph-cut algotithm by fusion features. Methods Firstly, we convert the image to Lab color space, and extract the original image's Gabor tex- ture features, fuse the texture features and color features, to obtain fusion features. Re-use integration fea-tures to improve SLIC (Simple Linear Iterative Clustering ) method. Using the improved method to pre-segment the original image, extract super-pixel area, and build area adjacent diagram. Then save the fusion characteristics of each super pixel region, respectively, build Gaussian mixture model of two features, and using the relative entropy to adapt the weight of fusion features in segmentation process, and optimize Gibbs energy function. Finally, perform iterative graph cut algorithm, and the segmentation re- sults are obtained. Conclusions Experimental results show that tation of images with poor color features, and by improving the prove the efficiency, reduce the number of iterations, and can ground objects our algorithm has good result of segmen- SLIC pre-segmentation algorithm to im- get a better edge protection of the fore-ground objects.
关 键 词:图割 GABOR纹理特征 高斯混合模型(GMM) 相对熵 SLIC
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.100.204