检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王永香[1,2,3] 米慧娟[2,3] 张传力[2,3] 苏光[2] 毕宇安[2,3] 王振中[2,3] 萧伟[1,2,3]
机构地区:[1]南京中医药大学药学院,江苏南京210023 [2]江苏康缘药业股份有限公司,江苏连云港222001 [3]中药制药过程新技术国家重点实验室,江苏连云港222001
出 处:《中国中药杂志》2014年第23期4608-4614,共7页China Journal of Chinese Materia Medica
基 金:国家"重大新药创制"科技重大专项(2013ZX09402203)
摘 要:近红外光谱技术作为一种快速的过程分析技术已被成功的应用于中药制药领域。该文以热毒宁注射液金银花青蒿醇沉过程为例,采用近红外光谱技术建立热毒宁注射液金银花青蒿醇沉过程关键指标的定量分析模型,具体方法如下:在线采集金银花青蒿醇沉过程142个样品近红外光谱图,完成样品主要药效指标的离线检测,经过异常点的剔除、光谱预处理方法的确定和最佳波段的选择,运用偏最小二乘法(PLS)建立近红外光谱与主要药效指标之间的定量校正模型,并对金银花青蒿醇沉过程的未知样品进行预测,达到快速检测的目的。试验结果显示所建立的新绿原酸、绿原酸、隐绿原酸、断氧化马钱子苷4个药效指标的定量校正模型相关系数(R2)分别为0.973 872,0.985 449,0.975 509,0.979 790;未知样品预测值与检测值的相对偏差(RSEP)分别为2.922 49%,2.341 37%,2.930 40%,2.184 60%,预测效果理想。该研究得出采用近红外光谱技术建立的定量校正模型表现出较好的稳定性和预测精度,可用于热毒宁注射液金银花青蒿醇沉过程样品的主要药效指标的快速定量检测,达到醇沉过程在线监测的目的。Near infrared (NIR) spectroscopy as a kind of rapid process analysis technology has been successfully applied in Chinese medicine pharmaceutical process. In this research, the technology was adopted to establish the rapid quantitative analysis mod- els of main indicators from the Lonicera japonica and Artemisia annua alcohol precipitation process of Reduning injection. On-line NIR spectra of 142 samples from alcohol precipitation process were collected and the content of main indicators for each sample were detec- ted through off-line HPLC. With eliminating outliers, determination of spectra pretreatment method and selecting optimal band, the NIR quantitative calibration model for each indicator was established using partial least squares (PLS). These models were used to predict the unknown samples from precipitation process of Reduning injection to achieve the goal of rapid detection. The results showed that the models were ideal. The correlation coefficients of models for neochlorogenic acid, chlorogenic acid, 4-O-caffeoylquinic acid and secoxyloganin were 0. 973 872, 0. 985 449, 0. 975 509 and 0. 979 790, respectively and their relative standard errors of prediction (RSEP) were 2. 922 49%, 2. 341 37%, 2. 930 40% and 2. 184 60%, respectively. This study indicated that the NIR quantitative calibration model showed good stability and precision, and it can be used in rapid quantitative detection of main indicators of efficacy in order to on-line monitor the alcohol precipitation process of Reduning injection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15